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Multiple scattering temporal correlation function in a half space with finite-size heterogeneities
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An exact solution for the boundary problem of temporal correlations of light multiply scattered from a
medium occupying a half space is found by means of the Wiener-Hopf method, taking into account single-
scattering anisotropy. Within thB; approximation a universal initial decay rate of the temporal correlation
function is obtained. For larger time intervals a higher single-scattering anisotropy yields a higher decay rate
contrary to predictions of the diffusion approximation. Within fRg approximation, which takes account of
the first- and second-order Legendre polynomials, the solution obtained becomes universal in an expanded
temporal range and agrees rather well with the known measurement data.
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[. INTRODUCTION range. Usually for the initial temporal range one assumes a
decay law of the form * y\/6t/r for the field correlation
Beginning with the discovery of photon weak localization function, wheret is the time,r=1/Dk? is the characteristic
[1,2] much attention has been paid to studies of multipletime, D is the self-diffusion coefficient of a Brownian par-
light scattering from highly inhomogeneous methae, e.g., ticle, k is the wave number, and the paramejedescribes
[3—6]). For most problems of multiple scattering, bounded-the initial slope. It was found in Ref§18,19 that the initial
ness of the scattering system appears to be essential. With#ppey approximately equal to 2 is universal, independent of
the diffusion approximation the mirror image method is the concentration and size of the scattering particles. In con-
widely used[7], satisfying mixed Dirichlet boundary condi- trast to these results the diffusion approximation is known to
tions. However, the mirror image method appears to be inpredict a spe_cmc depend_e_nce on the s_lngle—scatterlng anisot-
sufficient[8] for a description of coherent backscattering or"OPY- In particular, the initial slope varies from the valye
of the intensity correlation functions of reflected or transmit-= 2.4 for the isotropic phase functionps¢=0, to y=0.71
ted light, since these phenomena are caused by light tranr cosé—1 [8]. In the present paper by solving the bound-
port through a surface layer wherein the approximation valicry problem in theP; approximation we find that the initial
for an infinite medium becomes inadequate. slopevy is exactly 2. For larger time values the decay rate of
To account for the finite size of the scatterers one resortthe correlation function grows with increasing @éysquite
to an expansion in spherical harmonj€s10]. The diffusion ~ opposite to the prediction of the diffusion approximation.
approximation implies that such an expansion is restricted tdVithin the P, approximation we find that the dependence on
the first-order, oP,, Legendre polynomial. Within thi®,  the parameters of anisotropy becomes much weaker and the
approximation the transport mean free pkithbecomes the intensity correlation function calculated within ti, ap-
characteristic scalgL1] instead of the photon mean free path Proximation agrees rather well with the known measure-
| due to the single-scattering anisotropy. Contributions ofM€Nts[19] in a wide range of its variation. _
higher order spherical harmonics were considered in Refs. The paper is organ!zed as follows. In Sec. Il we derive the
[12,13 going beyond the diffusion approximation for an in- Bethe—SaIpeter equation for the cohergnce_ function. In Sec.
finite medium also. For a system of pointlike scatterers therd!: by e>.<pand|'ng the coher.ence fu'nctlon'lnto a Legendre
exists the famous exact Miine solution of the boundary probPolynomial series, an equation set is obtained for the terms
lem of multiple scattering from a half spaf®,10,14. This of the expansion, and its solution is found using _the Wiener-
solution was generalized in Refd5,16 to include the co- Hopf method. In.Sec. IV.the r_esylts of calculations of the
herent backscattering. In Ref&,17] the limit of highly an- temporal corrt_alatlon function within th; and P> approxi-
isotropic single scattering:,o_sb’—&, wherecosg is the mean mations are given and analyzed. In the Appendix the deriva-

cosine of the single scattering angle, was shown to be exact ion of a Mllne_-hke solgnon_m the f_ramework of the Wiener-
soluble. opf method is described in detail.

Here, generalizing the Milne approach, we solve the
boundary problem for the temporal correlation function of
multiple scattering from a system of Brownian particles, tak-
ing the single-scattering anisotropy into account. We con-
sider the case of moderate anisotropy, permitting the Leg- We consider a medium with random permittivig(r,t)
endre polynomial analysis, and find an exact solution, which=¢ + §¢(r,t) which fluctuates in space and time about the
explicitly exhibits a dependence on the parameters of anisoensemble average={e(r,t)). Neglecting polarization ef-
ropy cosé andcos’ 6. The solution obtained permits calcula- fects we change the Maxwell wave equation into the Helm-
tion of the intensity correlation function in a wide temporal holz one and present it in the form

Il. BETHE-SALPETER EQUATION FOR A MEDIUM
OCCUPYING A HALF SPACE
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B 1 center-of-mass coordinaterj=(rj+rj’)/2 and the relative
E(r,t)=(E(r)+ A dryT(r—ry)de(ry,HE(rL,Y, onesr=r;—r;, one presents the exponential entering Eq.
(1)  (2) as follows:

where(E(r))=E exp(k;-r —iwt) is the mean fieldk; is the exp(—ike ro+ik¥ -ro+iki-r—ik¥*-ry)

incident wave vector in the mediurﬂ',(r)=k§ exp(kr)/r is

the Green’s function of the scalar wave equation, &gd - F{‘ 2 n 2 explik; - 17 —ikq- '
=wl/c=2m/\ is the vacuum wave number. We omit the | cosd; | cosbs Pl Ts 2k

monochromatic factor expgt) since the time it takes the
light to propagate through the medium is sufficiently less
than the characteristic interval of the random permittivity
variations.

We define the scattered field a$E(r,t)=E(r,t)
—(E(r,t)). An average of the product of two complex-
conjugated fieldséE* (r,t) and SE(r,0) at different mo-
ments of time can be presented in the form

(6)

where 6, and 6, are the angles of incidence and scattering,
respectively. Equatiof3) can be presented in the form

I'(Ry,Ry,tlks ki) =k§G(ks—k; ,t) (R~ Ry)

+k4f dR3G(— kgt Kos,t)
(SE* (r 1) SE(r,0)) =1 "2E2C(t|ke k), o) TR heTE

XA(Rx)T'(R3,Rq,t|kys ki), (7
whereC(t|ks,k;) is the temporal field correlation function (Rea)T'(Ra Ry tlkza. ki), (7)

where
C(tlks ki) = f drodridr,dri exp( —iks ro+iks -rj

n n é _ r_g

Fiki-ry—ikE - EDOT (1 rh ). (2) F(RZ’Rl’”kS’ki)‘f drydrol'| Ro+ 5 Re= 5
Herer is the distance from the scattering system to the ob- R. 4 r_{ Rae r_It
servation point, much exceeding any other spatial length, and thott

k¢ is the scattered wave vector. The function o,
I'(rp,r5,rqe,r5,t), known as the ladder propagator, satisfies Xexp( —iks ry+iki-ry ®

the Bethe-Salpeter equation ) ) )
is the Fourier transform of the ladder operator with respect to

the relative coordinateskij=kRini]1 is the wave vector
propagating fronR; to R;, Rj;=R;—R;, and the propaga-
tor A(R)=R 2exp(—R/) stems from the product of two
+ | dradriTir.— complex-conjugated  Green’s functionsT(R) and
J fodr3T(rz—ra) T*(R), KA(R)=T(R)T*(R).
The ladder operator depends, due to the geometry consid-

><T*(ré—ré)I‘(r3,r§,r1,r1,t)}, 3 ered, on the relative two-dimensional vectpb;=(R,

—R;),, lying in the (x,y) plane tangential to the boundary,
and the coordinates;, andz,:

r<r2,r;,r1,r1,t>=kéG(rz—rg,w{a(rz—r1>a<r;—r1>

where

F(R27Rl1t|kS1ki):r(p211221zlat|k31ki)' (9)

1
G(rl_rz,tl_tz): 2<58(r1,t1)58(r2,t2)> (4) . ) . -
(4m) Applying the integral operatiotiydz, exd —z /(I cosé)] to

: . L : Eq. (8) we get
is the binary correlator of permittivity fluctuations.

Assuming that the temporal decay of the permittivity fluc-
tuation can be described as Brownian particle diffusion, on
gets for the Fourier transform of the permittivity correlator

D(p21.22,1ks ki) = koG (ks — ki 1) 8(p2r) () eXp( — 2, 1)

+kéJ G(—kstkaz, ) A(Ry9)
E;(q,t):j drG(r,tyexp(—iq-r)=Go(q)exp —t/7). X D (p31,23,t|Kzg,ki)dRg, (10

(5
_ _ where
The functionGy(q)=G(q,0) is the single-scattering cross

section, or phase function. We consider the weak scattering >
regime, A <I. D(po1,25,t|ks ki) = Jo dz; exd —z; /(1 cos6;)]
Let the medium occupy the half spare 0, wherezis the
Cartesian coordinate normal to the boundary. Introducing the XT(po1,22,21,t|Ks,Ki). (11
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Equation(10) can be considered as the Schwartzschild-Milne 1
equation generalized for the temporal correlations. 2j—+17j(22-t):gj 0(z2)exp( —z3/1)
The temporal field correlation functio(®) can be pre-
sented as 1 w
+— > f dz3A i (0,223) yi(2Z3,t)
4l =512 Jo
C(t|ks,ki)=Sf szlfo dz, @(p21,2,,1[Ks k) (14
x exd z,/(l cosby)], (12 forj=1.23, where

where S is the illuminated area. Recall that> /2 in the yj(z,t)zf ¥i(P21,2,1)dpy1. (15

backscattering geometry and the exponential in(E#). van-

ishes at largez,. The parameters

Ill. THE GENERALIZED MILNE EQUATION SOLUTION gj=gj(t)=lkéf dQsé(ks_ ; ,t)PJQ(COSGS)

The function®(p,1,2,,t|ks,k;) depends on the directions
of the three vectorg,,, kg, andk;. For simplicity we re- = P?(cosa)exp{—2(1—cos€)t/7-] (16)
strict ourselves to the case of normal incidence with velgtor
directed along the unit vectog, normal to the boundary, describe the evolution of the binary permittivity correlator
ki=k(0,0,1). In a spherical coordinate system theexpanded in Legendre polynomials. It is worth noting that

vectorskg and p,; can be parametrized as the parameterg,; andg, do not become zero &t 0 even in
the case of an isotropic phase function. In this case these
k= K(Sin 5 COSehs , Sin O Sin s, COSHy), parameters can easily be found:
) exp(— 2t/ 7)sinh(2t/ )
P21= p12(COSP,,sing, ,0). 90= 2t/ 7 7
We expand the functio®(p,1,2,,t|Kg,k;) into a series in
the spherical functions up to terms of the second order: _exp(—2t/7)[(2t/7)cos 2t/ 7) — sinh(2t/7) ]
! (2t/7)2 '
1 0 (17
q)(leyzzat|ks,ki):m[Yo(PZLZz,t)Po(COS@s)
Whent/7<1 the problem of the temporal dependence of the
+ y1(p21,22,1) PY(cOSHy) correlation function is formally identical to that of the scat-
) L tering intensity for albedo less than unity. However, with
+ 71 7(p21,22,t) P1(cosbs)cos increasingt, these problems are seen to become different

0 since termsy;, j=1, can no longer be ignored. For an ar-
T v2(p21,22, 1) P5(COS0) bitrary phase function the parametert) can be written at

+ ¥ pa1,25,t) P3(cOSHS) cOSP small timet<r as follows:

+ ¥ (a1, 25,1) P3(cOSH) cos 2],

1 2t (1 0)
go~1— —(1—cos#h),
(19 °T T

where P!(x) are the Legendre polynomiaIng(x) ~cosf— E cosf—co< 6
—1, PAX)=x, PYx)=v1I-x2, PYx)=(3x2—1)/2, o 7 !
P3(x)=3xy1—x%, P5(x)=3(1-x?), and¢=ps— ¢, .

To calculate the temporal correlation function one need
to integrate®(p,1,2,,t|ks,k;) over tangential coordinates
P21, as is seen from Eq12). Therefore terms containing the

&tc. The optical theorem relates the permittivity correlator to
the photon mean free path:

angle ¢ in the serieq13) do not contribute to the temporal |71:ng dQ.G(k—k;,0). (18)
correlation function for symmetry reasons, and can be
omitted.

Performing  successively in  Eq. (100 con- The symmetric elements;(0,z) are defined as follows:
volutions of the formsfdp,./dQg, fdp,./dQPI(cosby), g
andfdszdQSPg(cosas), where [d() dgnotes integ.ration Aoo(0,2)=2f —rexp(—|z|r/|),
over orientations of the vectdr,, we obtain the equation set 1 r
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=dr
Aoi02)=25912) | S ex—[2lr),
=dr | 3
Aoz(O,z)zjlT(r—2—1>exq—|z|rll),
(19

=dr
A11(0,Z):2f —exp—[Zr/),
ir

edr | 3
A15(0.2)= sgn(z) Jl r_2<r_2_l) exp(—|z|r/l),

r

1(=dr(3 \*
A22(0,z)=—f —|—=—1| exp(—|z|r/l).
2)1 r2
We define the Laplace transforms pf(z,t) as follows:

Tyj(s,t)=J:exq—szll)yj(z,t)dz, s=0. (20

Performing the Laplace transformation of the integral equa-

tion set(14) with respect to the variable,, we get

5 - 1
[1—9oMo(S)]yo(s,t) +smM(s)goyi(s,t) — 590[3”11(3)

—mo(8)]72(s,) =goao(s,1),

91SMy(8)yo(s,t) +

1 - 1
3 glml(s)) ya(s,t) + 5915[3”12(5)

—my(s)]ya(s,t)=gras(s,b), (21)
1 ~ 1
~ 5923My(S) ~Mo(8) ] 70(8,1) + 595 3My(s)

- 1 1
—my(s)]yi(s,t)+ E—Zgz[9m2(s)—6m1(s)

+mo(s)]|72(s,1) =gras(s,1),
where
_ 1 | 1+s
My(S) = 2514’

my(8)=s"my(s)—1], my(s)=s"?[my(s)—1/3],

1 1jw ds; -~
=1frs 2 1@7(51,'[),

+1fw % s (22)
=7, = A - _ s L 7
1+s 24 S%(Sl_S),y 1
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1 1foc ds (3 |-
aZ(S’t)_1+s_Z L 5:(5=9) S_i_ ¥(S1,t).

We here define the functiop(s,t) as follows:

~ - 1. 1/3 |-
YsD=v(s0) = nlst+5 —2—1)72(5.0- (23
S

Note that fors=1 this function can be presented in the form

V(8,0 =0(8,1) = P1(1/8) y1(8,1) + Po(1/5) ya(S,1).
(24)

Thus the temporal field correlation functi¢h?) in the P,
approximation for backscattering, c@s<0, takes the form

C(t|ksvki)~f dpdzy[ vo(p,zy,t)+ 71(P1221I)P(1)(00595)
+72(p,22,t) PY(cosbs) lexf 2, /(1 cosh)]
=y(s1), (25)

wheres= —1/cosf,. As is seen from Eq(25) the function

7(1t) determines the temporal correlation function of radia-
tion scattered strictly backwardg= 1,

V(1) =C(t|—ki k)=C(1),

less the coherent backscattering component, which is not
considered here.

As is seen from Eq(25), in deriving the temporal corre-
lation function it is sufficient to find the functio(23) rather
than the Legendre expansion coefficients separately. Just this
function y(s,t) enters the integral terms of the right-hand
side (RHS’9) of Egs.(21). It turns out that Eqs(21) can be
rearranged in a linear combination that contains only the
function y(s,t) and appears to be a closed Milne-like equa-
tion for this function, i.e., for the temporal correlation func-
tion. With this aim we multiply the second equation of the
equation set(21) by 3s !(go—1) and the third one by
5[3s723(1—go)(1—g;)—1] and add all three equations. We
obtain

P(s,)y(s,1)=A(s1), (26)

where
15
b(s,t)=(1- go){ 1-3g1my(s)— Zgz(l_ g1)[3my(s)

5
domy(s) — Zgz[3mz(3)_ my(s)]|,

(27)

—my(s)]|—s?
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(1+s)aj(s,;t)—»1 with s—-1, j=0,1,2,

3 5 3

A(s,)=go2o~ 5 (1~ 90)g181~ 5| 1~ (1~ Qo)

S which follow from Egs.(22).

The formula(29) presents the exact solution of the bound-
9,a,. (29) ary problem for the temporal field correlation function in a

medium occupying a half space, with the single-scattering

] . . ) ] anisotropy accounted for up to tlig terms.
Equation(26) is a closed integral equation with respectto | the P, approximation, at sma<1 andt<r, one has

the sought functiony(s,t). At t=0 this function describes

X(1-91)

the multiple scattering intensity within the, approxima- P(s,t)~2(t/ 7)(1—cosh)?—s?/3. (33
tion. Puttingg,;=g,=0 one comes back to the Milne equa-
tion with the well-known solution. The reciprocal of this function describes the solution of the

Equation(26) exhibits analytic properties that permit us to Bethe-Salpeter equation deep inside a medium, far from the
apply to it the Wiener-Hopf method. This method is based orboundary. Completed with the mirror image method, Eq.
the regularity of functions entering the integral equation in(33) describes the temporal correlation function in the diffu-
the complexs plane. In fact, one requires these functions tosion approximation.
be regular in some strip of the plane and simultaneously have

a finite number of zeros there. , IV. CALCULATION RESULTS AND DISCUSSION
Describing details of the derivation in the Appendix, we
present the solution as follows: Using the solution obtained we calculate the temporal cor-
relation function for isotropic and anisotropic single scatter-
~ Co(t)+cy(t)s+ey(t)s? B ing in theP,; andP, approximations. We restrict ourselves to
y(s,t)= (st 1) " +Sexp[—J(s,t)], the case of backward scattering, @gs1.
(29) For isotropic single scattering the parametegét) and

c4(t) must vanishgy(t)=c4(t) =0, and the remaining sole
where the parametey® ands* are given exactly in Appen- parametec,(t) is determined by Eq(32) as
dix. Fort<r they take the form

Co(t)=pBgoexd —Iu(1)](1+s%) "1, (34
3
B~ 1-g, WhereJM(s,t)=J(s,t)|glzgzzo. Fors=1 we get
6t - 30,(t —2Jy(1t
¢~ g g~ o) 2. (@0 (1= R UEAZZNED] g

2(1+s*)?

The functionJ(s,t) presents the integral The subscriptM indicates that the corresponding quantity
B2yis' 1) relates to the isotropic Milne casg;=g,=0. At t=0 one
’ 1 (31)  obtains the famous Milne solution

S’2+S*2

] B sfw ds’ |
(S,t)—ﬂ T n

and appears to be a generalization of the Chandrasékhar Yu(s,00=
function[15,20.

The parametergy(t), cq(t), and c,(t), being constant i . L .
with respect tas, can be found by substituting solutig29) quu%re drpotEdeggngerlﬁe ?n ?me E ' f nlazlLtlrrlezlngi;vals 1S
into Eq.(26). Then expanding both sides of the equation intod€Scribed in Eq(35) by the factor (1 s™) " “~ votir
series ins and equating terms of the same order we gefOr c0s6=0. Note that this factor appears when one uses the

3exg —Iu(1,00—Iu(s,0)]
s(1+s)

(36)

identities sufficient to determingy(t), c,(t), andc,(t). Ex-  Image method and ghooses the image reflection plane to co-
cess identities are then satisfied automatically. We also udB¢ide with the physical boundary. ,
the relationshifgsee Eq(A15)] The functionsgy=g(t) andJy(s,t) are regular with re-

spect tot. Their temporal dependence must be accounted for
if one considers a wider temporal range. However, for higher
Oo+391(1—gp) values oft=r Eqg. (35 becomes invalid, since in this case

Co(t) —cq(t)+cy(t) = 1 b

+s* the parameterg; for j>1 are no longer negligible even for
5 an isotropic phase function, corresponding to H).
- 592[1—3(1—90)(1—91)] Note that Eqs(34) and (35) for finite values oft corre- -
spond to the Milne solution for an absorbing system with
xexd —J(10)], (32)  honunity albedo.

Now we turn to an analysis of E€R9) in the P, approxi-
which turns out to be necessarily satisfied because of thmation. Substituting Eq29) into Eq.(26) and takings=0,
limits we get
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[1+Cq(t)By(t)+Co(t)Ba(t)], C(t)~ o 2(1—cosh)/6t/r.

L 3B(1-9do)9:
Cl(t)_ s* (1+S*)2
(37)

This relationship describes the initial slope properly in the
case of isotropic scatteringps#=0, but becomes absolutely
B (=ds, exg—J(s;,0)] in_adequate for the highly anisotropic case; dosé<1, pre-
Bol)=% | —————- (39)  dicting a zero decay rate.
2J1 8] (s+1)(s;+5*) The diffusion approximation requires the image plane to
be moved outside the medium at a distargd&, usually
To verify the solution we have also used E@6) ats=s*  changed to 0.7104. This requirement is known to follow

producing the same results. Sin@(t) are integrals of the energy conservation law. One obtains thereyéth
known functions, Eqs(37) and (32) readily permit one to

find the parameters,(t) and c,(t) and thus calculate the L .
temporal correlation function. For a larger time rangt,72 8/6t/ 7
=1, the binary permittivity correlation function ~ CV7 (1+5%)2 1+ S—*[l—exr(—1.420 6“7)]] '
(82(0)Se(t)) must be known to calculate the parameiggs (42)
and g; without expansion of the exponential éx2(1
—cosHt/7] in Eq. (16).

Consider the small time rangér<1. As is seen from Eq.
(37), the parametee4(t) turns out to be small of the order of
Jt. In fact, with 1— gy~ (2t/7) (1—cosé) and the definition
(30) for s*, the factor before the square brackets in 87)
can be written in first order int as 38(1—go)g;/s*
~c0s6y18t/ 7. Then the term withc,(t) in the RHS of Eq.
(37) can be omitted, and using the ident{#21) we calcu-

where

The single-scattering anisotropy influences the temporal
correlation decay in two opposite ways. On the one hand, in
both solutions, the Milne-like result E¢40) as well as Eq.
(42), there appears a factor { #1s*) "2, which causes a
slower decay with increasingpsé due to the decrease of the
parametes* ~ \/6t/ 7(1— cos6).

This behavior of the parametsf is due, first, to an in-

late crease of the effective temporal parameter(Dg?) !
=[2Dk?(1—cos#)] ' with extension of the single-
cy(t)~—cosh 18t/ rex —Iyu(1,0)]. (39)  scattering indicatrix, and, secondly, to the diffusion mecha-

nism of radiation transport at large distances, as described by
Thus, taking into account E¢32), we obtain the temporal  EQ- (33). _ _
correlation function in thé®, approximation as On the other hand, the term in the square brackets in Eq.
(42) and the term containing the parametg(t) in the
C()~1.51+5%) 2exd —2J(1)][1+(2/\/3)c,(H)ed@D]  Milne-like solution(40) both cause a more rapid decay of the
. temporal correlation function. The term in E@2) appears
~1.5exp—2J(11)][1—2s* +2 cosh/6t/7]. (40 because the mirror plane is moved outside the medium. One
carries out this removal satisfying the energy flux conserva-
Formula(40) is valid to first order inyt/ 7. Taking account of ~ tion.
the numerical valugs] 1.5 ex—2Jy(1,0)]~4.227 67, itcan __A similar decrease of the parametai(t) with increasing

be rewritten as follows: cosd, as is seen from Eq39), is caused by the fact that the
RHS of the Milne equation Eq26) becomes zero &=0
6t andt=0. In its turn this is due to the equation of balance of
C(t)y~4.227 6{ 1—2\/;>- (41)  the incident and scattered radiation, as has been shown ear-
lier [21].

Thus the decay of the temporal correlation function appears Thus the appgarange_of tgrms mcre.asmg the slope of the
to be universal in the/ = variable for the small time range, in t€mporal correlation witleosd is caused in both cases by the

the P, approximation. The universality means that the initial conservation law. The crucial difference between the two so-

slope in units ot/ 7 does not depend on the anisotropy mag—!{ﬁtio?s Eq.(40)h%r_1? Eq(42) is_;[haéin theijMiIn_e-Iike solu_tio?
nitude cosé, with the slope coefficient being exactly 2. This € terms exhibiting opposite dependencies on: anisotropy

appears to be in good agreement with the measurements §fncel out exactly the dependence cosg, while in the

Ref. [19]. iffusion approximation the two similar terms fail to cancel
For better insight into what is causing this behavior of theout this dependence aosé. _ _

correlation function we compare soluti¢d0) with the cor- _ In Fig. 1 the temporal field c_orrelat|on func_t|on qalculated

responding formula from the diffusion approximation. with Egs. (29), (32), and (37) is plotted against time for

The usual approach to the boundary problem within thedifferent values otosé. Note that in the case of strong an-
diffusion approximation consists in the image method. Wherisotropy, 1-cosf<1, the parameters-1g, ands* are still
one chooses the mirror image plane coincident with thesmall even for values df = of the order of unity; this makes
physical boundary this method readily yields Eq. (37) valid beyond the limitt/7~1.
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FIG. 2. The normalized field temporal correlation function in
the P, approximation vs\6t/7 for cos#=0.6: (a) P,=0, (b) P,
=0.2,(c) P,=0.36. Dotted ling(d) in the inset is a fit to Eq41).

FIG. 1. The field temporal correlation functi@t,1), normal-
ized by the intensity in th&; approximation, vs/6t/, for differ-
ent cosé: (a) cos#=0, (b) cosd#=0.5, (c) E%O.?S, (d) cosé
=0.9, (e) and (f) are fits C(t,1)~(1+ 6t/7) "2 and C(t,1)~(1
—2./6t/7), respectively, illustrating the initial slope universality.

tion in opposite directions. With increasirugsé the decay
_ _ _ rate increases, and with increasioos 6 the decay rate de-
The noted universality of the temporal correlation decayq egses.
is seen to be violated with increasing time. &ss6 increases To account forcosd andco< 6 simultaneously we use the
the decay rate of the correlation function increases als%enyey-Greenstein phase functifto]
within the P, approximation.
The principal qualitative merit of the diffusion approxi-
mation result(42) is that it predicts an initial temporal de- G(sting) _
pendence of the form 2

C(t)~1—yy6t/r,

S _ ) culation are shown for several pairs gf and g, values,
where y is finite for any value oftosf. However, this pre-  \which are chosen to correspond to the Henyey-Greenstein
diction appears to be invalid quantitatively. In particular, EQ.function. For better comparison with experiment we plotted
(42) gives y=2.4 for cos¢=0 and y=0.7 forcosé—1. In  the intensity correlation function C,(t)=(1(0)I(t)),
the Iarger time range the diffusion apprOXimation forecasts &¢|C(t)|2 against\/t/_q-_ We also reproduce the known mea-
decrease of the decay rate, strictly opposite to the exact regyrement data from Ref19]. In the temporal range where
sult, which predicts a decay rate increase. dispersion of the data is small, the theoretical curves for

We calculate the temporal correlation function in ¢ gitferent cosd are seen to essentially coincide with the mea-
approximation also. Finding the paramet&g(t), ci(t),  sured one. Note that in restricting oneself to Byeterm in
andc(t), we substitute solutioi29) into Eq.(26) and ex-  the phase function one bounds Rgvalues,P,< 0.4, which
pand_the latter into a series énEquating terms of the zeroth in turn limits thecosé values tocosd<0.63.
and first orders Irs, respecnve_ly, and using E(82), we get Thus we conclude that by accounting simultaneously for
a closed algebraic system with respect to the sought parango parameters of anisotropy within the Henyey-Greenstein
eters. . . o model one obtains a temporal correlation decay law that

In Fig. 2 the.results calculated in t“%? approximation turns out to be universal in the dimensionless variabten
are shown for differencos’ ¢ values, keeping the parameter 5 \yide temporal range. In turn, this universality means that

specific peculiarities of a scattering system are contained

1—(cos6)?

[1+ (cos@)?—2 cosd cosh]3?’

(43

where$(3 cog 6—1)=(cos6)>. In Fig. 3 the results of a cal-

cosh fixed at cos6=0.6. Including the parameteP,

=3(3cog 6—1) is seen to change the initial slope slightly solely in the parameter.

and causes a slower damping of the temporal correlation For \/t/7>0.35 the curves with different values 0bsé

function at larger times. o are seen to diverge. However, the calculated results agree
As is seen from Figs. 1 and 2, the parametsf and  quantitatively with the experiment in this temporal range

cos # change the decay rate of the temporal correlation funcalso, assuming a growing data scatter.
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initial slope of the temporal correlation function, indepen-
dent of the anisotropy parameters in the case of Brownian
diffusion. This result is exact in th®, approximation and
turns out to be a consequence of the fact that the anisotropy
effects appearing, on the one hand, due to the radiation dif-
fusion and, on the other hand, due to the energy flux balance
at the boundary cancel each other out exactly.

Since in the present consideration the expansion param-
eter ist/ 7(1—cos#), which remains small in the case of high
anisotropy even fott/7 of the order of unity, the theory
might be applied in an expanded temporal range.

The present results permit one to obtain the specific pa-
rameterr=(Dk?) ! from measurement data since the for-
mula achieved does not contain any fitting parameters. This
makes it desirable to have systematic measurements of the
temporal correlation function in suspensions in wide ranges
of concentration and scatterer size.

Note that in the case of different mechanisms of permit-
tivity fluctuation decay other than Brownian diffusion, for
instance, in the case of relaxation, when the fluctuation decay
is independent of the wave vector transfer, we should obtain

FIG. 3. The intensity correlation function vgt/7 in the P,
approximation withgzz(@%2 in correspondence with Eq442):
(a) cosf=0, (b) cosf#=0.2, (c) cosf=0.4, (d) cos#=0.6; the inset
represents the experimental plot of Rief9].

a different dependence awosé.

other boundary problems of multiple scattering, such as co-
herent backscattering.

V. CONCLUSION
APPENDIX

We have found the exact solution of the boundary prob- ~
lem for the field temporal correlation function accounting for ~ To eliminate the poles=0 in the functiony(s,t) and
single-scattering anisotropy up to the second-order Legendigoless=0 ands=—1 in the RHS of Eq(26) we multiply
polynomial. This solution covers an intermediate range othis equation bys?(s+1). The functiony(s,t) is seen to be
anisotropy between the pointlike scatterer system describeggular in the plane of the complex varialslevith two cuts
by the Milne solution, and the solution found earlj€;17] along the real axiss=1 ands< — 1, respectively. We define
for the highly anisotropic case. the zero ofy(s,t) as the roots=s* of the transcendental

The main feature of the solution found is the universalequation

15
(1—go){ 1—3g.my(s*)— Z(1_91)92[3m2(5*)_ my(s*)]

s* 2_ (Al)

5
gomy(s*) — Zgz[3m2(5* )—my(s*)]

The parametep is defined as follows: with the asymptotic propertiegy(0,t)=1 and ¢(s,t)—1

for s—oo. Equation(26) can be rewritten as follows:

P(s,)  (1-90)(1-91)(1~02)

2= A2
g oS e s*? "2 In(s )y (s, )=y (s), (A4)
To first order in 1-gg<1 Eqgs.(Al) and(A2) give Eq.(30). h
We define the function where
B’ s? (s* +9)s2(s+1)¥(s1)
lﬁN(S,t):l/l(S,t)m(l—E) (A3) yH(st)= BEs 7> (A5)

016601-8
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s?(s+1)(B—s)A(s,t)

s*—s

Yy (s,t)= (A6)

The functiony* (s,t) is regular in the right half plane Re
=0, as is seen from the definition20) and (23), and
vy~ (s,t) is regular in the left half plane Re< 1, according to
Eq. (22). Thus ¥ (s,t) turns out to be a ratio of functions
regular at Re=0 and at Re<1, respectively,

(s
misn=LE (A7)
Yy (s)
Since in(s,t) is an odd function of s, ¥y(s,t)

=yn(—s,t), it can be presented in the form

h*(s)
h=(s)’
whereh™(s) is regular at Re>—1 andh™(s) is regular at
Res<0. One can puh®(0)=h"(0)=1 since asymptoti-

cally (0t)=1. We assume also that" (s) does not con-
tain zeros in the right half plane Re-0, and nor doek ™ (s)

In(s,t)= (A8)

in the left one Rs<<0. Otherwise these functions should be
redefined, considering the finite number of left-hand side ze-

ross; of the functionh™(s) as poles of the function ™ (s)
in the left half plane, and, contrarily, the zere§ of the
function h*(s) as poles of the functioh ™ (s) in the right
half plane. Consider the integral

!

ds
———In (s, 1).
-i»s'(s'—5s)

s [i=
[(s)=—5—

2 i (A9)

Substituting Eq(A8) into Eq.(A9) and calculating the inte-
gral with the residue theorem, we obtain

~[Inh*(s),
S _[m h~(s),

Res>0,

Res< 0. (AL0)

Taking into account the symmetry @fy(s) with respect to
the sign ofs, we get

h™(—-s)= o) Res>0. (Al11)
From Egs.(A7) and (A8) it follows that
h™(s)y (s,;t)=h"(s)y"(s,t). (A12)

In the limit s—o we have asymptotically thah(s)
~const, andy ™ (s)~s?, y~(s)~s?. Thus we can easily ob-
tain

at s— o,

h*(s)y*(s)~s’ (A13)

Since the RHS of Eq(A12) is regular at Re=0, and the

PHYSICAL REVIEW B5 016601

regular everywhere can be presented, taking into account the
asymptote/Al3), as a second-order polynomial $n
h™(s)y (s)=h*(s)y"(s)=co+cis+C8%,  ¢j=c;(t).
(A14)

It follows from definitions(22) that the functiony™ (s) is
known ats=—1:

1t 5
y (=)= Tter 90+ 301(1-90) =5 09201~ 3(1~go)
X(1-g0];. (A15)

Puttings=—1 in Eq.(A14) and using Eq(A11), we get

co—crtcrmy (-Dh- (1= (ag)
h*(+1)
Equation(Al14) yields
+ _ 2
v (S,t)=(Co+CiS+CyS )h+(s)
=(cotcstcs)exd —I(st)].  (Al7)

Taking into account the relationship11) and explicitly tak-

ing the integral
s [i= ds s'?
In 1—; =In

1+ >
27i -i=s'(s’' —s)

,  Res>0,
B

(A18)

we get

exdg —I(s,t)]= ﬁexp{—\](s,t)], Res>0.
(A19)

Substituting Eqs(A5) and(A19) into Eq.(A17), we come to
Eq. (29). EquationgAl15), (A16), and(A19) yield Eq.(32).
Substituting the solutiofR9) into Eq.(26) and expanding
the latter in a series ig we obtain a sequence of identities to
be satisfied obligatorily, which relate the integral parameters
B,(t). In particular, for isotropic single scattering; =g,
=0, att=0 i.e., for the Milne solution case, one obtains

cyBY(0)=1,

1

BY(0)+BY(0)=—, (A20)

@l

BY(0)+BY(0)= —

ﬁ’

LHS at Res<0, they are both regular in the whole plane. where the parameter* is a linear term in the expansion
According to the generalized Liouville theorem a function exd —Jy(s,0)]~1+sz* + O(s?),

016601-9
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1 (= ds They are seen to satisfy Eq6A20) up to the third sign.
zF=— pye —len[3ml(isl)]zo.7104, Combining the first two equatiorf$\20) and noticing that
m) - Sl

M
c5'(0)= 3 exd —Iu(1,0]
and is the known extrapolation parameter of the Milne 2 M

theory. from Eq. (32), we easily find that
The numerical values of the integrd8) are found to be Wy
BY'(0)=0.3427, B} (0)=0.2343, and B}'(0)=0.1787. 1+c; B3 (0)=exgd —In(1,0]. (A21)
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