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Multiple scattering temporal correlation function in a half space with finite-size heterogeneities
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An exact solution for the boundary problem of temporal correlations of light multiply scattered from a
medium occupying a half space is found by means of the Wiener-Hopf method, taking into account single-
scattering anisotropy. Within theP1 approximation a universal initial decay rate of the temporal correlation
function is obtained. For larger time intervals a higher single-scattering anisotropy yields a higher decay rate
contrary to predictions of the diffusion approximation. Within theP2 approximation, which takes account of
the first- and second-order Legendre polynomials, the solution obtained becomes universal in an expanded
temporal range and agrees rather well with the known measurement data.
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I. INTRODUCTION

Beginning with the discovery of photon weak localizatio
@1,2# much attention has been paid to studies of multi
light scattering from highly inhomogeneous media~see, e.g.,
@3–6#!. For most problems of multiple scattering, bounde
ness of the scattering system appears to be essential. W
the diffusion approximation the mirror image method
widely used@7#, satisfying mixed Dirichlet boundary cond
tions. However, the mirror image method appears to be
sufficient @8# for a description of coherent backscattering
of the intensity correlation functions of reflected or transm
ted light, since these phenomena are caused by light tr
port through a surface layer wherein the approximation va
for an infinite medium becomes inadequate.

To account for the finite size of the scatterers one res
to an expansion in spherical harmonics@9,10#. The diffusion
approximation implies that such an expansion is restricte
the first-order, orP1, Legendre polynomial. Within thisP1

approximation the transport mean free pathl * becomes the
characteristic scale@11# instead of the photon mean free pa
l due to the single-scattering anisotropy. Contributions
higher order spherical harmonics were considered in R
@12,13# going beyond the diffusion approximation for an i
finite medium also. For a system of pointlike scatterers th
exists the famous exact Milne solution of the boundary pr
lem of multiple scattering from a half space@9,10,14#. This
solution was generalized in Refs.@15,16# to include the co-
herent backscattering. In Refs.@6,17# the limit of highly an-
isotropic single scattering,cosu→1, wherecosu is the mean
cosine of the single scattering angle, was shown to be exa
soluble.

Here, generalizing the Milne approach, we solve
boundary problem for the temporal correlation function
multiple scattering from a system of Brownian particles, ta
ing the single-scattering anisotropy into account. We c
sider the case of moderate anisotropy, permitting the L
endre polynomial analysis, and find an exact solution, wh
explicitly exhibits a dependence on the parameters of ani
ropy cosu andcos2 u. The solution obtained permits calcula
tion of the intensity correlation function in a wide tempor
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range. Usually for the initial temporal range one assume
decay law of the form 12gA6t/t for the field correlation
function, wheret is the time,t51/Dk2 is the characteristic
time, D is the self-diffusion coefficient of a Brownian pa
ticle, k is the wave number, and the parameterg describes
the initial slope. It was found in Refs.@18,19# that the initial
slopeg approximately equal to 2 is universal, independent
the concentration and size of the scattering particles. In c
trast to these results the diffusion approximation is known
predict a specific dependence on the single-scattering an
ropy. In particular, the initial slope varies from the valueg
52.4 for the isotropic phase function,cosu50, to g50.71
for cosu→1 @8#. In the present paper by solving the boun
ary problem in theP1 approximation we find that the initia
slopeg is exactly 2. For larger time values the decay rate
the correlation function grows with increasing cosū, quite
opposite to the prediction of the diffusion approximatio
Within theP2 approximation we find that the dependence
the parameters of anisotropy becomes much weaker and
intensity correlation function calculated within theP2 ap-
proximation agrees rather well with the known measu
ments@19# in a wide range of its variation.

The paper is organized as follows. In Sec. II we derive
Bethe-Salpeter equation for the coherence function. In S
III, by expanding the coherence function into a Legend
polynomial series, an equation set is obtained for the te
of the expansion, and its solution is found using the Wien
Hopf method. In Sec. IV the results of calculations of t
temporal correlation function within theP1 andP2 approxi-
mations are given and analyzed. In the Appendix the der
tion of a Milne-like solution in the framework of the Wiene
Hopf method is described in detail.

II. BETHE-SALPETER EQUATION FOR A MEDIUM
OCCUPYING A HALF SPACE

We consider a medium with random permittivity«(r ,t)
5«1d«(r ,t) which fluctuates in space and time about t
ensemble average«5^«(r ,t)&. Neglecting polarization ef-
fects we change the Maxwell wave equation into the He
holz one and present it in the form
©2001 The American Physical Society01-1
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E~r ,t !5^E~r !&1
1

4pE dr1T~r2r1!d«~r1 ,t !E~r1 ,t !,

~1!

where^E(r )&5E exp(ik i•r2 ivt) is the mean field,k i is the
incident wave vector in the medium,T(r )5k0

2 exp(ikr)/r is
the Green’s function of the scalar wave equation, andk0
5v/c52p/l is the vacuum wave number. We omit th
monochromatic factor exp(ivt) since the time it takes the
light to propagate through the medium is sufficiently le
than the characteristic interval of the random permittiv
variations.

We define the scattered field asdE(r ,t)5E(r ,t)
2^E(r ,t)&. An average of the product of two complex
conjugated fieldsdE* (r ,t) and dE(r ,0) at different mo-
ments of time can be presented in the form

^dE* ~r ,t !dE~r ,0!&5r 22E2C~ tuks ,k i !,

whereC(tuks ,k i) is the temporal field correlation function

C~ tuks ,k i !5E dr2dr28dr1dr18 exp~2 iks•r21 iks* •r28

1 ik i•r12 ik i* •r18!G~r2 ,r28 ,r1 ,r18 ,t !. ~2!

Here r is the distance from the scattering system to the
servation point, much exceeding any other spatial length,
ks is the scattered wave vector. The functio
G(r2 ,r28 ,r1 ,r18 ,t), known as the ladder propagator, satisfi
the Bethe-Salpeter equation

G~r2 ,r28 ,r1 ,r18 ,t !5k0
4G~r22r28 ,t !Fd~r22r1!d~r282r18!

1E dr3dr38T~r22r3!

3T* ~r282r38!G~r3 ,r38 ,r1 ,r18 ,t !G , ~3!

where

G~r12r2 ,t12t2!5
1

~4p!2
^d«~r1 ,t1!d«~r2 ,t2!& ~4!

is the binary correlator of permittivity fluctuations.
Assuming that the temporal decay of the permittivity flu

tuation can be described as Brownian particle diffusion, o
gets for the Fourier transform of the permittivity correlato

G̃~q,t !5E drG~r ,t !exp~2 iq•r !5G̃0~q!exp~2t/t!.

~5!

The functionG̃0(q)5G̃(q,0) is the single-scattering cros
section, or phase function. We consider the weak scatte
regime,l! l .

Let the medium occupy the half spacez.0, wherez is the
Cartesian coordinate normal to the boundary. Introducing
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s

-
d

s

e

g

e

center-of-mass coordinatesRj5(r j1r j8)/2 and the relative
onesr j95r j2r j8 , one presents the exponential entering E
~2! as follows:

exp~2 iks•r21 iks* •r281 ik i•r12 ik i* •r18!

'expS 2
z1

l cosu i
1

z2

l cosus
Dexp~ ik i•r192 iks•r29!,

~6!

whereu i and us are the angles of incidence and scatterin
respectively. Equation~3! can be presented in the form

G~R2 ,R1 ,tuks ,k i !5k0
4G̃~ks2k i ,t !d~R22R1!

1k0
4E dR3G̃~2ks1k23,t !

3L~R23!G~R3 ,R1 ,tuk23,k i !, ~7!

where

G~R2 ,R1 ,tuks ,k i !5E dr19dr29GS R21
r29

2
,R22

r29

2
,

R11
r19

2
,R12

r19

2
,t D

3exp~2 iks•r291 ik i•r19! ~8!

is the Fourier transform of the ladder operator with respec
the relative coordinates,k i j 5kRi j Ri j

21 is the wave vector
propagating fromRj to Ri , Ri j 5Ri2Rj , and the propaga-
tor L(R)5R22 exp(2R/l) stems from the product of two
complex-conjugated Green’s functionsT(R) and
T* (R), k0

4L(R)5T(R)T* (R).
The ladder operator depends, due to the geometry con

ered, on the relative two-dimensional vectorr215(R2
2R1)' , lying in the (x,y) plane tangential to the boundar
and the coordinatesz1 andz2:

G~R2 ,R1 ,tuks ,k i !5G~r21,z2 ,z1 ,tuks ,k i !. ~9!

Applying the integral operation*0
`dz1 exp@2z1 /(l cosui)# to

Eq. ~8! we get

F~r21,z2 ,tuks ,k i !5k0
4G̃~ks2k i ,t !d~r21!u~z2!exp~2z2 / l !

1k0
4E G̃~2ks1k23,t !L~R23!

3F~r31,z3 ,tuk23,k i !dR3 , ~10!

where

F~r21,z2 ,tuks ,k i !5E
0

`

dz1 exp@2z1 /~ l cosu i !#

3G~r21,z2 ,z1 ,tuks ,k i !. ~11!
1-2
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Equation~10! can be considered as the Schwartzschild-Mi
equation generalized for the temporal correlations.

The temporal field correlation function~2! can be pre-
sented as

C~ tuks ,k i !5SE dr21E
0

`

dz2 F~r21,z2 ,tuks ,k i !

3exp@z2 /~ l cosus!#, ~12!

whereS is the illuminated area. Recall thatus.p/2 in the
backscattering geometry and the exponential in Eq.~12! van-
ishes at largez2.

III. THE GENERALIZED MILNE EQUATION SOLUTION

The functionF(r21,z2 ,tuks ,k i) depends on the direction
of the three vectorsr21, ks , andk i . For simplicity we re-
strict ourselves to the case of normal incidence with vectok i
directed along the unit vectorez normal to the boundary
k i5k(0,0,1). In a spherical coordinate system t
vectorsks andr21 can be parametrized as

ks5k~sinus cosfs ,sinus sinfs ,cosus!,

r215r12~cosfr ,sinfr ,0!.

We expand the functionF(r21,z2 ,tuks ,k i) into a series in
the spherical functions up to terms of the second order:

F~r21,z2 ,tuks ,k i !5
1

4p l
@g0~r21,z2 ,t !P0

0~cosus!

1g1~r21,z2 ,t !P1
0~cosus!

1g1
(1)~r21,z2 ,t !P1

1~cosus!cosf

1g2~r21,z2 ,t !P2
0~cosus!

1g2
(1)~r21,z2 ,t !P2

1~cosus!cosf

1g2
(2)~r21,z2 ,t !P2

2~cosus!cos 2f#,

~13!

where Pi
j (x) are the Legendre polynomials:P0

0(x)
51, P1

0(x)5x, P1
1(x)5A12x2, P2

0(x)5(3x221)/2,
P2

1(x)53xA12x2, P2
2(x)53(12x2), andf5fs2fr .

To calculate the temporal correlation function one ne
to integrateF(r21,z2 ,tuks ,k i) over tangential coordinate
r21, as is seen from Eq.~12!. Therefore terms containing th
anglef in the series~13! do not contribute to the tempora
correlation function for symmetry reasons, and can
omitted.

Performing successively in Eq. ~10! con-
volutions of the forms*dr21*dVs , *dr21*dVsP1

0(cosus),
and *dr21*dVsP2

0(cosus), where*dVs denotes integration
over orientations of the vectorks , we obtain the equation se
01660
e
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2 j 11
g j~z2 ,t !5gjFu~z2!exp~2z2 / l !

1
1

4l (
k50,1,2

E
0

`

dz3L jk~0,z23!gk~z3 ,t !G
~14!

for j 51,2,3, where

g j~z,t !5E g j~r21,z,t !dr21. ~15!

The parameters

gj5gj~ t !5 lk0
4E dVsG̃~ks2k i ,t !Pj

0~cosus!

5Pj
0~cosu!exp@22~12cosu!t/t# ~16!

describe the evolution of the binary permittivity correlat
expanded in Legendre polynomials. It is worth noting th
the parametersg1 andg2 do not become zero attÞ0 even in
the case of an isotropic phase function. In this case th
parameters can easily be found:

g05
exp~22t/t!sinh~2t/t!

2t/t
,

g15
exp~22t/t!@~2t/t!cosh~2t/t!2sinh~2t/t!#

~2t/t!2
.

~17!

Whent/t!1 the problem of the temporal dependence of
correlation function is formally identical to that of the sca
tering intensity for albedo less than unity. However, w
increasingt, these problems are seen to become differ
since termsgj , j >1, can no longer be ignored. For an a
bitrary phase function the parametersgj (t) can be written at
small timet,t as follows:

g0'12
2t

t
~12cosu!,

g1'cosu2
2t

t
~cosu2cos2 u!,

etc. The optical theorem relates the permittivity correlator
the photon mean free path:

l 215k0
4E dVsG̃~ks2k i ,0!. ~18!

The symmetric elementsL jk(0,z) are defined as follows:

L00~0,z!52E
1

`dr

r
exp~2uzur / l !,
1-3
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L01~0,z!52 sgn~z!E
1

`dr

r 2
exp~2uzur / l !,

L02~0,z!5E
1

`dr

r S 3

r 2
21D exp~2uzur / l !,

~19!

L11~0,z!52E
1

`dr

r 3
exp~2uzur / l !,

L12~0,z!5 sgn~z!E
1

`dr

r 2 S 3

r 2
21D exp~2uzur / l !,

L22~0,z!5
1

2E1

`dr

r S 3

r 2
21D 2

exp~2uzur / l !.

We define the Laplace transforms ofg j (z,t) as follows:

g̃ j~s,t !5E
0

`

exp~2sz/ l !g j~z,t !dz, s>0. ~20!

Performing the Laplace transformation of the integral eq
tion set~14! with respect to the variablez2, we get

@12g0m0~s!#g̃0~s,t !1sm1~s!g0g̃1~s,t !2
1

2
g0@3m1~s!

2m0~s!#g̃2~s,t !5g0a0~s,t !,

g1sm1~s!g̃0~s,t !1S 1

3
2g1m1~s! D g̃1~s,t !1

1

2
g1s@3m2~s!

2m1~s!#g̃2~s,t !5g1a1~s,t !, ~21!

2
1

2
g2@3m1~s!2m0~s!#g̃0~s,t !1

1

2
g2s@3m2~s!

2m1~s!#g̃1~s,t !1F1

5
2

1

4
g2@9m2~s!26m1~s!

1m0~s!#G g̃2~s,t !5g2a2~s,t !,

where

m0~s!5
1

2s
lnU11s

12sU,
m1~s!5s22@m0~s!21#, m2~s!5s22@m1~s!21/3#,

a0~s,t !5
1

11s
2

1

2E1

` ds1

s1~s12s!
g̃~s1 ,t !,

a1~s,t !5
1

11s
1

1

2E1

` ds1

s1
2~s12s!

g̃~s1 ,t !, ~22!
01660
-

a2~s,t !5
1

11s
2

1

4E1

` ds1

s1~s12s! S 3

s1
2

21D g̃~s1 ,t !.

We here define the functiong̃(s,t) as follows:

g̃~s,t ![g̃0~s,t !2
1

s
g̃1~s,t !1

1

2 S 3

s2
21D g̃2~s,t !. ~23!

Note that fors>1 this function can be presented in the for

g̃~s,t !5g̃0~s,t !2P1~1/s!g̃1~s,t !1P2~1/s!g̃2~s,t !.
~24!

Thus the temporal field correlation function~12! in theP2
approximation for backscattering, cosus,0, takes the form

C~ tuks ,k i !;E drdz2@g0~r,z2 ,t !1g1~r,z2 ,t !P1
0~cosus!

1g2~r,z2 ,t !P2
0~cosus!#exp@z2 /~ l cosus!#

5g̃~s,t !, ~25!

wheres521/cosus. As is seen from Eq.~25! the function
g̃(1,t) determines the temporal correlation function of rad
tion scattered strictly backward,us5p,

g̃~1,t !5C~ tu2k i ,k i ![C~ t !,

less the coherent backscattering component, which is
considered here.

As is seen from Eq.~25!, in deriving the temporal corre
lation function it is sufficient to find the function~23! rather
than the Legendre expansion coefficients separately. Jus
function g̃(s,t) enters the integral terms of the right-han
side ~RHS’s! of Eqs.~21!. It turns out that Eqs.~21! can be
rearranged in a linear combination that contains only
function g̃(s,t) and appears to be a closed Milne-like equ
tion for this function, i.e., for the temporal correlation fun
tion. With this aim we multiply the second equation of th
equation set~21! by 3s21(g021) and the third one by
5
2 @3s22(12g0)(12g1)21# and add all three equations. W
obtain

c~s,t !g̃~s,t !5A~s,t !, ~26!

where

c~s,t !5~12g0!F123g1m1~s!2
15

4
g2~12g1!@3m2~s!

2m1~s!#G2s2Fg0m1~s!2
5

4
g2@3m2~s!2m1~s!#G ,

~27!
1-4
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A~s,t !5g0a02
3

s
~12g0!g1a12

5

2 F12
3

s2
~12g0!

3~12g1!Gg2a2 . ~28!

Equation~26! is a closed integral equation with respect
the sought functiong̃(s,t). At t50 this function describes
the multiple scattering intensity within theP2 approxima-
tion. Puttingg15g250 one comes back to the Milne equ
tion with the well-known solution.

Equation~26! exhibits analytic properties that permit us
apply to it the Wiener-Hopf method. This method is based
the regularity of functions entering the integral equation
the complexs plane. In fact, one requires these functions
be regular in some strip of the plane and simultaneously h
a finite number of zeros there.

Describing details of the derivation in the Appendix, w
present the solution as follows:

g̃~s,t !5
c0~ t !1c1~ t !s1c2~ t !s2

s2~s11!

b

s* 1s
exp@2J~s,t !#,

~29!

where the parametersb ands* are given exactly in Appen
dix. For t!t they take the form

b'A 3

12g2
,

s* 'A3~12g0!~12g1!'~12cosu!A6t

t
. ~30!

The functionJ(s,t) presents the integral

J~s,t !5
s

2pE2`

` ds8

s821s2
lnFb2c~ is8,t !

s821s* 2 G ~31!

and appears to be a generalization of the ChandrasekhH
function @15,20#.

The parametersc0(t), c1(t), and c2(t), being constant
with respect tos, can be found by substituting solution~29!
into Eq.~26!. Then expanding both sides of the equation in
series ins and equating terms of the same order we
identities sufficient to determinec0(t), c1(t), andc2(t). Ex-
cess identities are then satisfied automatically. We also
the relationship@see Eq.~A15!#

c0~ t !2c1~ t !1c2~ t !5
b

11s*
H g013g1~12g0!

2
5

2
g2@123~12g0!~12g1!#J

3exp@2J~1,t !#, ~32!

which turns out to be necessarily satisfied because of
limits
01660
n
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t
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e

~11s!aj~s,t !→1 with s→21, j 50,1,2,

which follow from Eqs.~22!.
The formula~29! presents the exact solution of the boun

ary problem for the temporal field correlation function in
medium occupying a half space, with the single-scatter
anisotropy accounted for up to theP2 terms.

In the P1 approximation, at smalls!1 andt!t, one has

c~s,t !'2~ t/t!~12cosu!22s2/3. ~33!

The reciprocal of this function describes the solution of t
Bethe-Salpeter equation deep inside a medium, far from
boundary. Completed with the mirror image method, E
~33! describes the temporal correlation function in the diff
sion approximation.

IV. CALCULATION RESULTS AND DISCUSSION

Using the solution obtained we calculate the temporal c
relation function for isotropic and anisotropic single scatt
ing in theP1 andP2 approximations. We restrict ourselves
the case of backward scattering, cosus51.

For isotropic single scattering the parametersc0(t) and
c1(t) must vanish,c0(t)5c1(t)50, and the remaining sole
parameterc2(t) is determined by Eq.~32! as

c2~ t !5bg0 exp@2JM~1,t !#~11s* !21, ~34!

whereJM(s,t)5J(s,t)ug15g250. For s51 we get

g̃M~1,t !5
3g0~ t !exp@22JM~1,t !#

2~11s* !2
. ~35!

The subscriptM indicates that the corresponding quant
relates to the isotropic Milne case,g15g250. At t50 one
obtains the famous Milne solution

g̃M~s,0!5
3 exp@2JM~1,0!2JM~s,0!#

s~11s!
. ~36!

A square-root dependence on time for small time interval
described in Eq.~35! by the factor (11s* )22'122A6t/t
for cosu50. Note that this factor appears when one uses
image method and chooses the image reflection plane to
incide with the physical boundary.

The functionsg05g0(t) andJM(s,t) are regular with re-
spect tot. Their temporal dependence must be accounted
if one considers a wider temporal range. However, for hig
values oft>t Eq. ~35! becomes invalid, since in this cas
the parametersgj for j .1 are no longer negligible even fo
an isotropic phase function, corresponding to Eq.~17!.

Note that Eqs.~34! and ~35! for finite values oft corre-
spond to the Milne solution for an absorbing system w
nonunity albedo.

Now we turn to an analysis of Eq.~29! in theP1 approxi-
mation. Substituting Eq.~29! into Eq. ~26! and takings50,
we get
1-5
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c1~ t !52
3b~12g0!g1

s*
@11c1~ t !B4~ t !1c2~ t !B3~ t !#,

~37!

where

Bn~ t !5
b

2E1

`ds1

s1
n

exp@2J~s1 ,t !#

~s111!~s11s* !
. ~38!

To verify the solution we have also used Eq.~26! at s5s*
producing the same results. SinceBn(t) are integrals of
known functions, Eqs.~37! and ~32! readily permit one to
find the parametersc1(t) and c2(t) and thus calculate the
temporal correlation function. For a larger time range, 2t/t
>1, the binary permittivity correlation function
^d«(0)d«(t)& must be known to calculate the parametersg0
and g1 without expansion of the exponential exp@22(1
2cosu)t/t# in Eq. ~16!.

Consider the small time ranget/t!1. As is seen from Eq
~37!, the parameterc1(t) turns out to be small of the order o
At. In fact, with 12g0'(2t/t)(12cosu) and the definition
~30! for s* , the factor before the square brackets in Eq.~37!
can be written in first order int as 3b(12g0)g1 /s*
'cosuA18t/t. Then the term withc1(t) in the RHS of Eq.
~37! can be omitted, and using the identity~A21! we calcu-
late

c1~ t !'2cosuA18t/t exp@2JM~1,0!#. ~39!

Thus, taking into account Eq.~32!, we obtain the tempora
correlation function in theP1 approximation as

C~ t !'1.5~11s* !22 exp@22J~1,t !#@11~2/A3!c1~ t !eJ(1,t)#

'1.5 exp@22J~1,t !#@122s* 12 cosuA6t/t#. ~40!

Formula~40! is valid to first order inAt/t. Taking account of
the numerical value@6# 1.5 exp@22JM(1,0)#'4.227 67, it can
be rewritten as follows:

C~ t !'4.227 67S 122A6t

t D . ~41!

Thus the decay of the temporal correlation function appe
to be universal in thet/t variable for the small time range, i
the P1 approximation. The universality means that the init
slope in units oft/t does not depend on the anisotropy ma
nitudecosu, with the slope coefficient being exactly 2. Th
appears to be in good agreement with the measuremen
Ref. @19#.

For better insight into what is causing this behavior of t
correlation function we compare solution~40! with the cor-
responding formula from the diffusion approximation.

The usual approach to the boundary problem within
diffusion approximation consists in the image method. Wh
one chooses the mirror image plane coincident with
physical boundary this method readily yields
01660
rs

l
-

of

e
n
e

C~ t !;
1

~11s* !2
;122~12cosu!A6t/t.

This relationship describes the initial slope properly in t
case of isotropic scattering,cosu50, but becomes absolutel
inadequate for the highly anisotropic case, 12cosu!1, pre-
dicting a zero decay rate.

The diffusion approximation requires the image plane
be moved outside the medium at a distance2

3 l * , usually
changed to 0.7104l * . This requirement is known to follow
the energy conservation law. One obtains therewith@8#

C~ t !;
1

~11s* !2 H 11
1

s*
@12exp~21.4208A6t/t!#J .

~42!

The single-scattering anisotropy influences the tempo
correlation decay in two opposite ways. On the one hand
both solutions, the Milne-like result Eq.~40! as well as Eq.
~42!, there appears a factor (11s* )22, which causes a
slower decay with increasingcosu due to the decrease of th
parameters* 'A6t/t(12cosu).

This behavior of the parameters* is due, first, to an in-
crease of the effective temporal parametert→(Dq̄2)21

5@2Dk2(12cosu)#21 with extension of the single-
scattering indicatrix, and, secondly, to the diffusion mech
nism of radiation transport at large distances, as describe
Eq. ~33!.

On the other hand, the term in the square brackets in
~42! and the term containing the parameterc1(t) in the
Milne-like solution~40! both cause a more rapid decay of th
temporal correlation function. The term in Eq.~42! appears
because the mirror plane is moved outside the medium.
carries out this removal satisfying the energy flux conser
tion.

A similar decrease of the parameterc1(t) with increasing
cosu, as is seen from Eq.~39!, is caused by the fact that th
RHS of the Milne equation Eq.~26! becomes zero ats50
andt50. In its turn this is due to the equation of balance
the incident and scattered radiation, as has been shown
lier @21#.

Thus the appearance of terms increasing the slope of
temporal correlation withcosu is caused in both cases by th
conservation law. The crucial difference between the two
lutions Eq.~40! and Eq.~42! is that in the Milne-like solution
the terms exhibiting opposite dependencies on anisotr
cancel out exactly the dependence oncosu, while in the
diffusion approximation the two similar terms fail to canc
out this dependence oncosu.

In Fig. 1 the temporal field correlation function calculate
with Eqs. ~29!, ~32!, and ~37! is plotted against time for
different values ofcosu. Note that in the case of strong an
isotropy, 12cosu!1, the parameters 12g0 ands* are still
small even for values oft/t of the order of unity; this makes
Eq. ~37! valid beyond the limitt/t'1.
1-6
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The noted universality of the temporal correlation dec
is seen to be violated with increasing time. Ascosu increases
the decay rate of the correlation function increases a
within the P1 approximation.

The principal qualitative merit of the diffusion approx
mation result~42! is that it predicts an initial temporal de
pendence of the form

C~ t !;12gA6t/t,

whereg is finite for any value ofcosu. However, this pre-
diction appears to be invalid quantitatively. In particular, E
~42! gives g52.4 for cosu50 andg50.7 for cosu→1. In
the larger time range the diffusion approximation forecas
decrease of the decay rate, strictly opposite to the exac
sult, which predicts a decay rate increase.

We calculate the temporal correlation function in theP2
approximation also. Finding the parametersc0(t), c1(t),
andc2(t), we substitute solution~29! into Eq. ~26! and ex-
pand the latter into a series ins. Equating terms of the zerot
and first orders ins, respectively, and using Eq.~32!, we get
a closed algebraic system with respect to the sought pa
eters.

In Fig. 2 the results calculated in theP2 approximation
are shown for differentcos2 u values, keeping the paramet
cosu fixed at cosu50.6. Including the parameterP2

5 1
2 (3 cos2 u21) is seen to change the initial slope slight

and causes a slower damping of the temporal correla
function at larger times.

As is seen from Figs. 1 and 2, the parameterscosu and
cos2 u change the decay rate of the temporal correlation fu

FIG. 1. The field temporal correlation functionC(t,1), normal-
ized by the intensity in theP1 approximation, vsA6t/t, for differ-
ent cosu: ~a! cosu50, ~b! cosu50.5, ~c! cosu50.75, ~d! cosu
50.9, ~e! and ~f! are fits C(t,1);(11A6t/t)22 and C(t,1);(1
22A6t/t), respectively, illustrating the initial slope universality.
01660
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tion in opposite directions. With increasingcosu the decay
rate increases, and with increasingcos2 u the decay rate de
creases.

To account forcosu andcos2 u simultaneously we use th
Henyey-Greenstein phase function@10#

GS 2k sin
u

2D;
12~cosu!2

@11~cosu!222 cosu cosu#3/2
, ~43!

where 1
2 (3 cos2 u21)5(cosu)2. In Fig. 3 the results of a cal

culation are shown for several pairs ofg1 and g2 values,
which are chosen to correspond to the Henyey-Greens
function. For better comparison with experiment we plott
the intensity correlation function C2(t)5^I (0)I (t)&c

'uC(t)u2 againstAt/t. We also reproduce the known me
surement data from Ref.@19#. In the temporal range wher
dispersion of the data is small, the theoretical curves
different cosu are seen to essentially coincide with the me
sured one. Note that in restricting oneself to theP2 term in
the phase function one bounds theP2 values,P2,0.4, which
in turn limits thecosu values tocosu,0.63.

Thus we conclude that by accounting simultaneously
two parameters of anisotropy within the Henyey-Greenst
model one obtains a temporal correlation decay law t
turns out to be universal in the dimensionless variablet/t in
a wide temporal range. In turn, this universality means t
specific peculiarities of a scattering system are contai
solely in the parametert.

For At/t.0.35 the curves with different values ofcosu
are seen to diverge. However, the calculated results a
quantitatively with the experiment in this temporal ran
also, assuming a growing data scatter.

FIG. 2. The normalized field temporal correlation function
the P2 approximation vsA6t/t for cosu50.6: ~a! P250, ~b! P2

50.2, ~c! P250.36. Dotted line~d! in the inset is a fit to Eq.~41!.
1-7
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V. CONCLUSION

We have found the exact solution of the boundary pr
lem for the field temporal correlation function accounting f
single-scattering anisotropy up to the second-order Lege
polynomial. This solution covers an intermediate range
anisotropy between the pointlike scatterer system descr
by the Milne solution, and the solution found earlier@6,17#
for the highly anisotropic case.

The main feature of the solution found is the univer

FIG. 3. The intensity correlation function vsAt/t in the P2

approximation withg25(cosu)2 in correspondence with Eq.~42!:
~a! cosu50, ~b! cosu50.2, ~c! cosu50.4, ~d! cosu50.6; the inset
represents the experimental plot of Ref.@19#.
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initial slope of the temporal correlation function, indepe
dent of the anisotropy parameters in the case of Brown
diffusion. This result is exact in theP1 approximation and
turns out to be a consequence of the fact that the anisot
effects appearing, on the one hand, due to the radiation
fusion and, on the other hand, due to the energy flux bala
at the boundary cancel each other out exactly.

Since in the present consideration the expansion par
eter ist/t(12cosu), which remains small in the case of hig
anisotropy even fort/t of the order of unity, the theory
might be applied in an expanded temporal range.

The present results permit one to obtain the specific
rametert5(Dk2)21 from measurement data since the fo
mula achieved does not contain any fitting parameters. T
makes it desirable to have systematic measurements o
temporal correlation function in suspensions in wide ran
of concentration and scatterer size.

Note that in the case of different mechanisms of perm
tivity fluctuation decay other than Brownian diffusion, fo
instance, in the case of relaxation, when the fluctuation de
is independent of the wave vector transfer, we should ob
a different dependence oncosu.

We hope that the method developed here can be applie
other boundary problems of multiple scattering, such as
herent backscattering.

APPENDIX

To eliminate the poles50 in the function g̃(s,t) and
poless50 ands521 in the RHS of Eq.~26! we multiply
this equation bys2(s11). The functionc(s,t) is seen to be
regular in the plane of the complex variables with two cuts
along the real axis,s>1 ands<21, respectively. We define
the zero ofc(s,t) as the roots5s* of the transcendenta
equation
s* 25

~12g0!H 123g1m1~s* !2
15

4
~12g1!g2@3m2~s* !2m1~s* !#J

g0m1~s* !2
5

4
g2@3m2~s* !2m1~s* !#

. ~A1!
The parameterb is defined as follows:

b225 lim
s→0

c~s,t !

s* 22s2
5

~12g0!~12g1!~12g2!

s* 2
. ~A2!

To first order in 12g0!1 Eqs.~A1! and~A2! give Eq.~30!.
We define the function

cN~s,t !5c~s,t !
b2

s* 22s2 S 12
s2

b2D ~A3!
with the asymptotic propertiescN(0,t)51 andcN(s,t)→1
for s→`. Equation~26! can be rewritten as follows:

cN~s,t !g1~s,t !5g2~s,t !, ~A4!

where

g1~s,t !5
~s* 1s!s2~s11!g̃~s,t !

b1s
, ~A5!
1-8
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g2~s,t !5
s2~s11!~b2s!A~s,t !

s* 2s
. ~A6!

The functiong̃1(s,t) is regular in the right half plane Res
>0, as is seen from the definitions~20! and ~23!, and
g̃2(s,t) is regular in the left half plane Res,1, according to
Eq. ~22!. Thus cN(s,t) turns out to be a ratio of function
regular at Res>0 and at Res,1, respectively,

cN~s,t !5
g2~s!

g1~s!
. ~A7!

Since cN(s,t) is an odd function of s, cN(s,t)
5cN(2s,t), it can be presented in the form

cN~s,t !5
h1~s!

h2~s!
, ~A8!

whereh1(s) is regular at Res.21 andh2(s) is regular at
Res<0. One can puth1(0)5h2(0)51 since asymptoti-
cally cN(0,t)51. We assume also thath1(s) does not con-
tain zeros in the right half plane Res.0, and nor doesh2(s)
in the left one Res,0. Otherwise these functions should b
redefined, considering the finite number of left-hand side
ros sj

2 of the functionh2(s) as poles of the functionh1(s)
in the left half plane, and, contrarily, the zerossj

1 of the
function h1(s) as poles of the functionh2(s) in the right
half plane. Consider the integral

I ~s!52
s

2p i E2 i`

i` ds8

s8~s82s!
ln cN~s8,t !. ~A9!

Substituting Eq.~A8! into Eq. ~A9! and calculating the inte
gral with the residue theorem, we obtain

I ~s!5H ln h1~s!, Res.0,

ln h2~s!, Res,0.
~A10!

Taking into account the symmetry ofcN(s) with respect to
the sign ofs, we get

h2~2s!5
1

h1~s!
, Res.0. ~A11!

From Eqs.~A7! and ~A8! it follows that

h2~s!g2~s,t !5h1~s!g1~s,t !. ~A12!

In the limit s→` we have asymptotically thath6(s)
;const, andg1(s);s2, g2(s);s2. Thus we can easily ob
tain

h6~s!g6~s!;s2 at s→`. ~A13!

Since the RHS of Eq.~A12! is regular at Res>0, and the
LHS at Res<0, they are both regular in the whole plan
According to the generalized Liouville theorem a functi
01660
-

regular everywhere can be presented, taking into accoun
asymptote~A13!, as a second-order polynomial ins:

h2~s!g2~s!5h1~s!g1~s!5c01c1s1c2s2, cj5cj~ t !.
~A14!

It follows from definitions~22! that the functiong2(s) is
known ats521:

g2~21!5
11b

11s*
H g013g1~12g0!2

5

2
g2@123~12g0!

3~12g1!#J . ~A15!

Puttings521 in Eq. ~A14! and using Eq.~A11!, we get

c02c11c25g2~21!h2~21!5
g2~21!

h1~11!
. ~A16!

Equation~A14! yields

g1~s,t !5~c01c1s1c2s2!
1

h1~s!

5~c01c1s1c2s2!exp@2I ~s,t !#. ~A17!

Taking into account the relationship~A11! and explicitly tak-
ing the integral

2
s

2p i E2 i`

i` ds8

s8~s82s!
lnS 12

s82

b2 D 5 lnS 11
s

b D , Res.0,

~A18!

we get

exp@2I ~s,t !#5
1

11s/b
exp@2J~s,t !#, Res.0.

~A19!

Substituting Eqs.~A5! and~A19! into Eq.~A17!, we come to
Eq. ~29!. Equations~A15!, ~A16!, and~A19! yield Eq. ~32!.

Substituting the solution~29! into Eq.~26! and expanding
the latter in a series ins, we obtain a sequence of identities
be satisfied obligatorily, which relate the integral paramet
Bn(t). In particular, for isotropic single scattering,g15g2
50, at t50 i.e., for the Milne solution case, one obtains

c2
MB2

M~0!51,

B2
M~0!1B3

M~0!5
1

A3
, ~A20!

B3
M~0!1B4

M~0!5
z*

A3
,

where the parameterz* is a linear term in the expansio
exp@2JM(s,0)#'11sz* 1O(s2),
1-9
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z* 52
1

2pE2`

` ds1

s1
2

ln@3m1~ is1!#50.7104,

and is the known extrapolation parameter of the Mil
theory.

The numerical values of the integrals~38! are found to be
B2

M(0)50.3427, B3
M(0)50.2343, and B4

M(0)50.1787.
d

d

e

ys

01660
They are seen to satisfy Eqs.~A20! up to the third sign.
Combining the first two equations~A20! and noticing that

c2
M~0!5A3 exp@2JM~1,0!#

from Eq. ~32!, we easily find that

11c2
MB3

M~0!5exp@2JM~1,0!#. ~A21!
.

s

ys.
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